
ImageJ Batch Processing

Alex Herbert

MRC Genome Damage and Stability Centre
University of Sussex

Science Road
Falmer

BN1 9RQ

a.herbert@sussex.ac.uk

Table of Contents
 1 Introduction........................................................................................................................2

 1.1 Single Image Analysis.................................................................................................2
 1.1.1 Open the image...................................................................................................2
 1.1.2 Analysis using Plugins.........................................................................................2

 2 Macro Recorder.................................................................................................................2
 2.1 Sequential Images in a Directory................................................................................5

 3 Batch Process Command..................................................................................................5
 4 Batch Macros.....................................................................................................................6

 4.1 Process Files in a Directory........................................................................................7
 4.2 Process Open Images................................................................................................8

mailto:a.herbert@sussex.ac.uk


 1 Introduction
ImageJ is an open source image analysis program. The program provides a plugin 
framework for adding custom functionality. There are many analysis routines built in to 
ImageJ and hundreds more can be freely downloaded from the web. 

This document describes how ImageJ can be used to automate the processing of large 
numbers of image files in a batch process.

 1.1 Single Image Analysis

 1.1.1 Open the image

ImageJ can open a large number of different image types using the FILE > OPEN... 
command. If your image type is not supported then it may be possible to open it using the 
BioFormats plugin. You can check the list of supported formats here:

http://www.loci.wisc.edu/bio-formats/formats

The BioFormats plugin can be downloaded from The BioFormats website:

http://www.loci.wisc.edu/files/software/loci_tools.jar

Place the Jar file in the ImageJ plugins directory, restart ImageJ and access the 
BioFormats import functionality using PLUGINS > LOCI > BIO-FORMATS IMPORTER.

 1.1.2 Analysis using Plugins

ImageJ has a large number of analysis commands available from the IMAGE, PROCESS and 
ANALYZE menus. Standard features include particle analysis, thresholding and histogram 
statistics. 

The analysis capabilities of ImageJ can be significantly expanded by using third party 
plugins. Plugins must conform to the ImageJ plugin framework. When placed in the 
ImageJ plugins directory they are automatically identified by ImageJ and become available 
for use (after restarting ImageJ or using the HELP > REFRESH MENUS command). 

There are many plugins freely available from the web. A large list is maintained on the 
ImageJ website:

http://rsbweb.nih.gov/ij/plugins/

Most plugins will add commands to the PLUGINS menu. However please consult the 
documentation of the plugin if available. 

When a plugin is run the user is often presented with options to configure the plugin 
parameters. After configuration the plugin will perform the analysis and the results will 
appear. Plugins commonly make changes directly to an image. However some plugins 
provide results tables and other visual displays. In many cases the parameters are easy to 
configure and it is possible to run the analysis plugin without user interaction, i.e. in an 
offline mode. The analysis can then be automated to allow processing of many images in a 
batch.

 2 Macro Recorder
ImageJ provides a recorder that can record any actions that are run by the user. These 
actions can then be saved as macros and re-run on other images. The macro recorder is a 

http://rsbweb.nih.gov/ij/plugins/
http://www.loci.wisc.edu/files/software/loci_tools.jar
http://www.loci.wisc.edu/bio-formats/formats


powerful tool that can be used to automate the processing of large numbers of images.

To start the recorder choose PLUGINS > MACROS > RECORD... This will present a recorder 
dialogue as shown below:

The Recorder provides the option to record the commands using different languages. The 
options are described below.

Record Mode Description

MACRO Uses the ImageJ macro language.

This language is used by the ImageJ macro tools. This is the 
correct option for automatically generating script commands to 
use in the BATCH COMMAND plugin

JAVASCRIPT Uses the JavaScript programming language.

PLUGIN Uses the Java programming language.

This can be used to generate a Java plugin to be installed in the 
ImageJ plugins directory

Unless you have a preference for writing scripts in JavaScript then it is better to use the 
ImageJ macro language (since there are more examples and help that can be found on 
the web for standard ImageJ macros).



The Recorder will record any command that supports the recorder functionality. This 
covers all of ImageJ's commands and most plugins. The follows shows the result of 
opening and image, converting it to a mask and then closing the image:

Note that the Recorder window is a text area that can be modified. Thus it is possible to 
change commands or delete commands that are not wanted in the macro.

When you have finished performing you work you can click the Create button and ImageJ 
will use the recorded commands to generate a new macro, script or plugin. The output 
type is controlled by the current Record mode. In the case of the Macro mode, ImageJ will 
create a new Macro window containing the macro. The macro generated for the previous 
recorded commands in shown below:

The new macro can be edited and saved. The macro can be run using Macros > RUN 
MACRO. This causes ImageJ to run each step of the macro in turn. Any dialogues normally 
required by the plugin command are suppressed and ImageJ will pass the specified 
parameters to the command. In the example above the parameters 'calculate black' are 
passed to the command 'Convert to Mask'.



 2.1 Sequential Images in a Directory
A simple use for recorded macros is to process all images in a directory:

• Place all images for analysis in a single directory

• Open the macro containing your analysis commands (or generate a new one using 
the recorder)

• Open the first image in the directory

• Run the macro in the macro window (MACROS > RUN MACRO)

• Open the next image using FILE > OPEN NEXT

• Re-run the macro

• Repeat this process for all images in the directory

This procedure is useful for quickly viewing the results of commands on many images 
since the user can pause at each image to see the results. However if the user does not 
want to interact with the images then ImageJ can run a macro command on all images in a 
directory without pausing (see the BATCH PROCESS COMMAND section). 

Note that the OPEN NEXT command constantly cycles through images in the current 
directory. ImageJ does not inform the user when all images have been processed.

 3 Batch Process Command
ImageJ provides the ability to perform the same actions to a set of images. These are 
available under the PROCESS > BATCH menu item. The most useful option is the PROCESS > 
BATCH > MACRO which performs a macro command on each input image. Other option 
include running the standard ImageJ MEASURE command on the images (e.g. for minimum, 
maximum, etc) or resizing the images.



The following image displays an example of the BATCH PROCESS dialogue:

The dialogue allows you to select an input directory containing all your images. You can 
then specify an optional output directory and the format for the output images. The 
dialogue provides the ability to select from common commands which are then inserted 
into the text area. You can also open your own macros or paste the code from the ImageJ 
macro recorder. The PROCESS button starts the batch processing.

For each image in the input folder ImageJ will open the image, apply the commands, save 
the image to the output folder (if present) and then close the image. Any results windows 
generated by the plugin commands will remain open.

Note that if you do not specify an output directory then the images will not be saved after 
running the command. This is useful if your macro command does not alter the input 
images.

 4 Batch Macros
The BATCH PROCESS command provides a powerful tool for processing many images. 
However it can be useful to perform more selective processing to images. For example 
process only certain images in a directory or apply different parameters depending on the 
image name.

More control over the batch processing of images requires writing custom macros in the 
ImageJ Macro Languge. The language has hundreds of built-in commands and custom 
commands can be defined. Full details of the ImageJ Macro Language can be found here:



http://rsbweb.nih.gov/ij/developer/macro/macros.html 

The following sections contain some examples of batch macros. In each case the main 
batch code is provided and a place-holder has been added to indicate where to put your 
macro code:

     // INSERT MACRO HERE

You should be able to insert your recorded macro commands into the place-holder and run 
the batch macro.

 4.1 Process Files in a Directory
The following macro code provides a macro version of the BATCH PROCESS command:

dir1 = getDirectory("Choose Source Directory ");
format = getFormat();
dir2 = getDirectory("Choose Destination Directory ");
list = getFileList(dir1);
setBatchMode(true);
for (i=0; i<list.length; i++) {
    showProgress(i+1, list.length);
    open(dir1+list[i]);

    // INSERT MACRO HERE

    if (format=="8-bit TIFF" || format=="GIF")
       convertTo8Bit();
    saveAs(format, dir2+list[i]);
    close();
}
 
function getFormat() {
    formats = newArray("TIFF", "8-bit TIFF", "JPEG", "GIF", "PNG",
       "PGM", "BMP", "FITS", "Text Image", "ZIP", "Raw");
    Dialog.create("Batch Convert");
    Dialog.addChoice("Convert to: ", formats, "TIFF");
    Dialog.show();
    return Dialog.getChoice();
}

function convertTo8Bit() {
    if (bitDepth==24)
        run("8-bit Color", "number=256");
    else
        run("8-bit");
}

http://rsbweb.nih.gov/ij/developer/macro/macros.html


The above code prompts for an output directory and the format required. If the output 
format is set to TIFF the code is much simpler:

dir1 = getDirectory("Choose Source Directory ");
dir2 = getDirectory("Choose Destination Directory ");
list = getFileList(dir1);
setBatchMode(true);
for (i=0; i<list.length; i++) {
    showProgress(i+1, list.length);
    open(dir1+list[i]);

    // INSERT MACRO HERE

    saveAs("TIFF", dir2+list[i]);
    close();
}

It is possible to extend the above stub code with specific functionality. For example to 
process only the .tif files use the following code (new code is shown in green):

dir1 = getDirectory("Choose Source Directory ");
dir2 = getDirectory("Choose Destination Directory ");
list = getFileList(dir1);
setBatchMode(true);
for (i=0; i<list.length; i++) {
    showProgress(i+1, list.length);
    filename = dir1 + list[i];
    if (endsWith(filename, "tif")) {
        open(filename);

        // INSERT MACRO HERE

        saveAs("TIFF", dir2+list[i]);
        close();
    }
}

Note that when a open parenthesis is used to define a block of code it must be closed. 
This is why the { and } are marked as new code.

 4.2 Process Open Images
It may be desired to run a command on all the currently open images. Since the command 
may open new result images this must be achieved by building a list of the images and 
then processing each one.

The following code provides a stub for processing all the currently open images:

  setBatchMode(true);
  imgArray = newArray(nImages); 
  for (i=0; i<nImages; i++) { 
    selectImage(i+1); 
    imgArray[i] = getImageID(); 



  } 

  //now we have a list of all open images, we can work on it: 

  for (i=0; i< imgArray.length; i++) { 
    selectImage(imgArray[i]); 

    // INSERT MACRO HERE

  } 


	 1  Introduction
	 1.1  Single Image Analysis
	 1.1.1  Open the image
	 1.1.2  Analysis using Plugins


	 2  Macro Recorder
	 2.1  Sequential Images in a Directory

	 3  Batch Process Command
	 4  Batch Macros
	 4.1  Process Files in a Directory
	 4.2  Process Open Images


